
choreography
IOI 2023 Practice Tasks

English (ISC)

Choreography
The Hungarian National Dance Ensemble is practicing a new choreography. There are N dancers
in the ensemble, numbered from 0 to N −1, where N is an even number.

At the practice sessions, the choreographer first lines up the dancers. The positions in the line are
numbered from 0 to N −1, and position i is occupied by dancer P [i] at the start.

After the dancers line up, the choreographer asks them to perform a sequence of moves. Each
move must be completed before they begin performing the next one. The dancers are practicing 4
types of moves:

1. Every dancer moves K positions to the right cyclically, where 0 ≤K < N . That is,
for each i from 0 to N −K −1, inclusive, the dancer currently standing at position i
moves to position i +K , and
for each i from N −K to N −1, inclusive, the dancer currently standing at position i
moves to position i +K −N .

2. Every dancer moves K positions to the left cyclically, where 0 ≤K < N . That is,
for each i from K to N −1, inclusive, the dancer currently standing at position i
moves to position i −K , and
for each i from 0 to K −1, inclusive, the dancer currently standing at position i
moves to position i −K +N .

3. For each i from 0 to −1, inclusive, dancers at positions 2i and 2i +1 swap places.
4. Suppose that position i (0 ≤ i < N) is occupied by dancer r before performing this move.

For each j from 0 to N −1, inclusive, dancer j moves to position r .

Note that the positions of the dancers are distinct at the end of each move.

Before the next session, the choreographer plans a sequence of M moves for the ensemble to
practice. He adds the moves to the sequence one by one. Sometimes, before adding the next
move, he wonders which positions certain dancers will occupy right after performing every move
that has been added to the sequence.

Your task is to simulate the dance moves planned by the choreographer and answer his questions
about the positions of the dancers.

Implementation Details

You should implement the following procedures:

2
N

i

j

choreography (1 of 4)

 void init(int N, int[] P)

N : the number of dancers.
P : array of length N describing the initial order of the dancers.
This procedure is called exactly once, before any other function calls.

 void move_right(int K)

K : the number of positions each dancer moves to the right.
This procedure adds a move of type 1 to the sequence of moves.

 void move_left(int K)

K : the number of positions each dancer moves to the left.
This procedure adds a move of type 2 to the sequence of moves.

 void swap_places()

This procedure adds a move of type 3 to the sequence of moves.

 void move_around()

This procedure adds a move of type 4 to the sequence of moves.

Procedures move_right , move_left , swap_places , and move_around are called for a total of M

times.

 int get_position(int D)

D: an integer representing a dancer.
This procedure should return the position of dancer D after performing every move added
to the sequence of moves before this call.
This procedure is called Q times.

Example

Consider the following sequence of calls:

 init(6, [5, 1, 4, 2, 0, 3])

There are 6 dancers, and the initial order of the dancers is given by the array [5, 1, 4, 2, 0, 3], that is,
position 0 is occupied by dancer 5, position 1 is occupied by dancer 1, position 2 is occupied by

choreography (2 of 4)

dancer 4, and so on.

 move_left(2)

Each dancer moves two places to the left cyclically. After the move, the order of the dancers
becomes [4, 2, 0, 3, 5, 1].

 get_position(0)

This call asks the position of dancer 0 after performing the first move. Dancer 0 is standing at
position 2. Therefore, the procedure should return 2.

 swap_places()

After this move, the order of the dancers becomes [2, 4, 3, 0, 1, 5].

 move_around()

The new position of each dancer is determined as follows.

Dancer 0: position 0 is occupied by dancer 2, so dancer 0 moves to position 2.
Dancer 1: position 1 is occupied by dancer 4, so dancer 1 stays at position 4.
Dancer 2: position 2 is occupied by dancer 3, so dancer 2 moves to position 3.
Dancer 3: position 3 is occupied by dancer 0, so dancer 3 moves to position 0.
Dancer 4: position 4 is occupied by dancer 1, so dancer 4 stays at position 1.
Dancer 5: position 5 is occupied by dancer 5, so dancer 5 stays at position 5.

After this move, the order of the dancers becomes [3, 4, 0, 2, 1, 5].

 get_position(3)

Dancer 3 is at position 0 after performing every move so far. The procedure should return 0.

Constraints

1 ≤ N ≤ 100 000
0 ≤ P [i] < N (for each i such that 0 ≤ i < N)
P [i] ≠ P [j] (for each i and j such that 0 ≤ i < j < N)
0 ≤M ≤ 100 000
1 ≤ Q ≤ 200 000
0 ≤K < N

0 ≤D < N

choreography (3 of 4)

Subtasks

1. (7 points) Only moves of types 1 and 2 are performed.
2. (12 points) N ⋅ (Q +M) ≤ 1 000 000
3. (10 points) Only moves of type 4 are performed.
4. (14 points) Only moves of types 3 and 4 are performed.
5. (28 points) Only moves of types 1, 2, and 4 are performed.
6. (29 points) No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

line 1: N M Q

line 2: P [0] P [1] … P [N −1]
line 3 + l (0 ≤ l <M +Q):

To perform a move of type 1: 1 K

To perform a move of type 2: 2 K

To perform a move of type 3: 3
To perform a move of type 4: 4
To ask the position of a dancer: 5 D

The sample grader prints your answers in the following format:

line 1 + q (0 ≤ q < Q): the values returned by get_position

choreography (4 of 4)

